
DAFT Finale Defense Report

D.A.F.T.
Final Defense Report
Florian Lainé
Angela Saadé
David Wu
Timothy Edward Pearson

1

DAFT Finale Defense Report

Contents

1 Introduction 4
1.1 Group presentation . 5

1.1.1 Global presentation . 5
1.1.2 Timothy Edward Pearson . 5
1.1.3 Florian Laine . 5
1.1.4 Angela Saade . 5
1.1.5 David Wu . 6

1.2 Project presentation . 6

2 Origin and Type of Project 7
2.1 Project’s Origins . 7
2.2 Type of Project . 7

3 State of the Art 8
3.1 Simulate ray . 8

3.1.1 Ray Tracing . 8
3.1.2 Ray Casting . 9

3.2 Rasterization . 10

4 Goal and Interest of the Project 11

5 Progress 12

6 Division of tasks 12
6.1 Task Distribution . 12
6.2 Advancement planed for defenses . 12
6.3 Real advancement . 13

7 Utils 14
7.1 Structure Tools . 14
7.2 Architecture . 14
7.3 Math Tools . 15

8 Preprocessing 16
8.1 Scene Parser . 16
8.2 Obj File Parser . 17
8.3 Material File Parser . 18

9 Rendering 21
9.1 Ray-Triangle Intersection . 21
9.2 Skybox . 23
9.3 Lights and shadow . 24
9.4 Lights . 24
9.5 Shadows . 26
9.6 Further optimizations . 29
9.7 Loading bar . 30

2

DAFT Finale Defense Report

9.8 Rasterization . 30

10 Video 32

11 Website 34
11.1 Bootstrap . 34

12 Optimisation 36
12.1 Bounding Boxes . 36
12.2 K-d trees . 36
12.3 Parallel Programming . 37

13 Features 39
13.1 Further Optimisations . 39

13.1.1 Optimized TLAS rotations . 39
13.1.2 Alpha tested geometry . 39
13.1.3 Denoising . 39

13.2 Image processing . 40

14 Conclusion 41

3

DAFT Finale Defense Report

1 Introduction

Ray casting is a technique used to create 2D images and maps from 3D environ-
ments in computer graphics. This process is used to create a 2D representation of the
3D environment, and can be used for applications such as video games, architectural
visualization, and robotic mapping. However, creating efficient and accurate ray cast-
ing algorithms can be challenging.

The DAFT Engine Library is a project of a real-time 3D engine designed to be easy
to use and integrated into existing systems. In the final version, we aim to provide a
library capable of rendering transparent objects with textures as well as reflections in
an efficient maner. Eventually, we plan to add physic characteristics to objects and
watch them interact in real time.

The project consists in making our own 3D engine starting from nothing. Indeed,
our program will be capable to create 2D images from 3D environments in computer
graphics. At the end, our project could be use as a C library for those who need a 3D
engine to generate images for applications such as creating graphics for video games,
architectural visualization or robotic mapping. Here are some examples of the most
known 3d engine that are used nowadays.

Figure 1: Unity3D Figure 2: Unreal

4

DAFT Finale Defense Report

1.1 Group presentation

1.1.1 Global presentation

Our group is composed of 4 members : David WU, Florian Lainé, Angela Saadé
and Timothy Edward Pearson. We are all students at EPITA for 2 years until now,
and for this project, we wanted to create our own 3D engine, using the C programming
language. Some of us are comfortable with this type of project, while it is the first
time for others. Within the group, we can find various profiles : when some of us like
programming, others might prefer doing mathematics or physics. With all our skills,
we will try to carry out this project.

1.1.2 Timothy Edward Pearson

I am really looking forward to this project and I think that it will serve very useful
in the future. Furthermore, building a 3D engine relies partially on vectors and linear
algebra which we have done in maths class so it will be fun to apply these subjects to
a real world situation. We intend to add some physics to the objects in our world if we
have time which I am very excited about. I am eager to learn more physics application
to my work at EPITA projects and better my knowledge in C programming.

1.1.3 Florian Laine

I’m really eager to start this project ! This 3D engine is a great opportunity of deeply
understanding a lot of math and algorithm optimization at the same time. I introduced
this project idea to my team mates and they immediately seemed to agreed. I personally
am truly into the 3D processing since a few months ago and am super excited to start
! I have been doing some test on my own up to now but I am thrilled to take it to
the next level by getting involved as part of a group work. I want to help as much as
possible considering my few previous experiences and can feel a bit delighted about it.
I obviously am very enthusiastic improving my skills and knowledge by implementing
a whole new architecture and discovering new ways of solving the issues I can already
have faced. Finally, this project represent for me a huge opportunity to accomplish
one of my child dream I had when I was wondering how 3D graphics are working while
playing some of my favorite games.

1.1.4 Angela Saade

I am excited to begin this project and see the potential it holds for me to gain a
deeper understanding of 3D processing. This project is a great opportunity to learn,
improve my skills by being part of this group. Even though I have had little to no
experience with this subject and working in a team can be challenging sometimes, but
I am determined to help and contribute as much as possible. It is a new type of project
for me; building approximately everything from scratch, and it motivates me to take
on this challenge.

5

DAFT Finale Defense Report

1.1.5 David Wu

Being a novice at programming, this type of project seemed to be a real challenge
for me. Indeed, I’ve never looked into such a project before : it includes loads of
mathematical notions but also a great algorithm interest. To some extent, I am excited
to begin the realization of this project, since I truly think that it can bring me some
knowledge and skills that I need for my future engineer career. I know that I have
teammates that I can count on, who will be able to help me if I struggle. Moreover,
since I have been playing video games for several years, I have always been interested
in 3D engines even if I have never had the opportunity to study the subject. I hope
this project will make me discover a new exciting field of computer sciences.

1.2 Project presentation

The project is composed of several steps, the main stage being the stage of ray
casting, including the computations that will allow us to render the objects on the
screen, at the end of the program. In order to carry out this project, we built our own
architecture that will be useful in each stage of our project. In addition, we have our
own .obj file parser, which basically convert these files into something readable for our
program. There are several ways to implement 3D engine, the one we chose being the
Ray casting process, that will be explained in details later on. However, implementing
an efficient and accurate ray casting process can be challenging. To proceed, we have
used existing algorithms and tried to make them fit into our project. Finally, we have
made our own architecture, our own parser for the .obj files, and our own way to
implement ray casting.

6

DAFT Finale Defense Report

2 Origin and Type of Project

2.1 Project’s Origins

The idea of making a 3D engine came from one of us. Following consultation, we
were all up to realize this project. Since each member of our group had already manip-
ulated 3D engine such as Unity3D in the context of the S2 project, we could see which
expectations were required for such a project. Moreover, we know that 3D engines are
nowadays useful in several domain, such as video game conception, movie realization,
but also in scientific fields, in order to simulate complex situations in a realistic 3D
environment.

Afterwards, we found that this project could be a real challenge for us, since it
includes a deep reflection on how to optimize our algorithms, this reflection being one
of the foundations of today’s programming. Furthermore, this project requires great
understanding of 3D geometrical mathematics, what really made us want to look into
it to improve our skills in this domain. Indeed, even if we have already manipulated
software including 3D engine, most of us had never thought about how these engines
were made.

2.2 Type of Project

As said before, our goal is to make our own 3D engine. This project will be entirely
made in the C programming language. As a goal, our 3D engine will be able to generate
2D images from a 3D environment. The quality of our results will rely heavily on our
ability to optimize the calculations given to the computer. Indeed, it exists several
ways to make 3D engine nowadays. We chose the Ray Casting process, which will be
explained later in the specification book. At the end, we would like the user to be able
to place objects in a 3D environment, making it as realistic as possible. Therefore, we
will have to implement functions that will be presented as ”tools” for the user.

Also, our program will aim at returning the most realistic images as possible, (pro-
cessing at 30 frames per second at minimum) which is equivalent to generate a smooth
3D video stream in real time. Finally, we want our project to include a whole API part,
in order to make it easy handling for those who want to generate simple 3D videos. In-
deed, we aim to make it easy for users to understand the different features implemented,
in order to deliver the best possible user experience.

7

DAFT Finale Defense Report

3 State of the Art

3.1 Simulate ray

Ray casting and ray tracing are both techniques used in computer graphics to sim-
ulate the behavior of light, but they are based on different principles and are used for
different purposes.
Ray casting is a simpler and more efficient technique used for rendering 3D scenes from
a 2D perspective. It works by casting rays from the camera, or viewpoint, into the
scene and determining the closest object that the ray intersects. The color and other
properties of that object are then used to determine the color of the pixel in the final
image. Ray casting is mainly used for creating 3D games and real-time applications, it
is fast and efficient but less accurate.
Ray tracing, on the other hand, is a more complex and computationally expensive tech-
nique used for creating highly realistic images. It works by tracing the path of light
as it bounces off of and passes through objects in a scene. This allows for accurate
simulations of reflections, refractions, and shadows, as well as global illumination and
ambient occlusion. Ray tracing is mainly used for offline rendering, animation, and
architectural visualization, it is accurate but takes more time to render.
In summary, ray casting is a fast, efficient method for creating 3D images from a 2D
perspective, while ray tracing is a more accurate and computationally expensive method
for creating highly realistic images.

3.1.1 Ray Tracing

Ray tracing is a technique used in computer graphics to generate images by simu-
lating the behavior of light. It works by tracing the path of light as it travels through
a 3D scene, taking into account the properties of the objects in the scene and how the
light interacts with them.
The process of ray tracing starts by casting a ray from the virtual camera, or viewpoint,
into the scene. The ray is tested for intersection with any objects in the scene, if an
intersection is found, the algorithm calculates the color of the pixel based on the surface
properties of the object, such as its texture, reflectivity, refractive index and so on.
It also takes into account other lighting conditions in the scene, such as the position
and intensity of light sources, as well as the properties of the surrounding environment.
This allows for the simulation of realistic reflections, refractions, and shadows, as well
as global illumination and ambient occlusion.
Ray tracing is a more computationally intensive technique than other rendering meth-
ods, such as rasterization, but it can produce highly realistic images with accurate
lighting and shading. It is mainly used in offline rendering, animation, and architec-
tural visualization, and increasingly used in real-time applications such as video games
and virtual reality.
Ray tracing is used in a variety of fields and industries. Some examples include:

• Film and animation: Many high-budget films and animated movies use ray tracing
to create photorealistic visual effects.

• Gaming: Some video games, such as the popular game Minecraft RTX, use ray
tracing to create more realistic lighting and shadows.

8

DAFT Finale Defense Report

• Architecture and design: Architects and designers use ray tracing to create real-
istic visualizations of buildings and other structures, to help clients understand
what the final product will look like.

• Automotive design: Automotive companies use ray tracing to visualize and test
the aerodynamics of car designs.

• Medicine: Medical researchers use ray tracing to simulate the behavior of light in
the human eye and other biological systems.

• Scientific visualization: Researchers in fields such as astrophysics and atmospheric
science use ray tracing to create accurate visualizations of complex data.

• Virtual Reality: Ray tracing is used in Virtual Reality to create realistic and
immersive experiences.

These are just a few examples, but ray tracing is used in many other fields as well.

3.1.2 Ray Casting

Ray casting is a technique used in computer graphics to generate images by tracing
rays from the viewpoint or camera into the scene. It is used to determine which object
in the scene is visible to the viewer and to calculate the color of each pixel.
The process of ray casting starts by casting a ray from the virtual camera, or viewpoint,
into the scene. The ray is tested for intersection with any objects in the scene, if an
intersection is found, the algorithm calculates the color of the pixel based on the surface
properties of the object, such as its texture, reflectivity, refractive index and so on.
Unlike Ray tracing, Ray casting does not take into account more complex lighting
conditions and interactions such as reflections, refractions, and global illumination.
Therefore, the images generated by ray casting are generally less realistic and detailed
than those generated by ray tracing.
Ray casting is a simpler and more efficient technique than ray tracing, which makes it
suitable for real-time applications such as video games and interactive simulations. It
is used to create 3D games and real-time applications, it is fast and efficient but less
accurate than ray tracing.
Ray casting is used in a variety of fields and industries, some examples include:

• Gaming: Ray casting is widely used in video games to quickly and efficiently
render 3D environments and characters. It is particularly useful for first-person
shooters and other fast-paced games, as it can quickly determine which objects
are visible to the player and calculate the appropriate colors and textures.

• Virtual Reality: Ray casting is used in VR and AR applications to quickly render
3D scenes and objects, allowing for smooth and responsive interactions.

• Medical imaging: Ray casting is used in medical imaging to create 3D visualiza-
tions of internal organs, bones, and other structures, making it easier to diagnose
and treat various medical conditions.

9

DAFT Finale Defense Report

• Robotics: Ray casting is used in robotics to map and navigate environments,
allowing robots to safely and efficiently move around in the real world.

• Industrial design: Ray casting is used in industrial design to create 3D visual-
izations of products and machinery, allowing designers to test and refine their
designs before they are built.

• Computer-aided design: Ray casting is used in CAD programs to quickly render
3D models and visualizing them.

These are just a few examples, but ray casting is used in many other fields as well.

3.2 Rasterization

Rasterization is a technique used in computer graphics to convert vector graphics
and 3D models into a 2D image representation. It works by taking a 3D scene and
dividing it into a series of small, rectangular pixels, called fragments or samples. The
properties of each fragment, such as its color, depth, and texture, are determined by
processing the scene’s geometric data, and the final image is created by assembling the
colored fragments on a 2D surface.
The process of rasterization starts by transforming the 3D coordinates of each vertex
in the scene into 2D screen coordinates. Then, the fragments are generated by filling
the area of the triangle formed by the three vertices of the 3D object. The fragments
generated in this way are called ”primitives”. The color and other properties of each
primitive are determined by applying textures, lighting, and shading.
Rasterization is a fast and efficient rendering technique, which makes it suitable for real-
time applications such as video games, interactive simulations, and virtual reality. It is
widely used in computer graphics because it is relatively simple and can be implemented
on a wide variety of hardware platforms.
It’s important to note that rasterization is not as accurate as ray tracing or ray casting,
it is more suitable for real-time applications because of its speed, but images generated
using rasterization are less realistic and detailed.

10

DAFT Finale Defense Report

4 Goal and Interest of the Project

Creating a ray casting engine will allow us to delve deeper into the mathematical and
computational principles of 3D graphics. We will gain a comprehensive understanding
of how to simulate the behavior of rays in a 3D space, including how to determine the
intersection of rays with 3D objects. This knowledge will be invaluable in understand-
ing the fundamental principles of 3D graphics, which can be applied in a wide range of
fields. Additionally, the process of creating a ray casting engine will give us hands-on
experience in implementing and optimizing the algorithms used in 3D graphics, further
strengthening our understanding of the underlying principles.

The project we are embarking on will be an exciting opportunity to not only cre-
ate a dynamic 3D rendering engine, but also to develop our programming skills in the
process. One of the key components of the project will be the implementation of the
ray casting algorithm, which is used to generate the images we see on screen. This will
require a deep understanding of the mathematics and physics behind the algorithm, as
well as the ability to optimize it for real-time performance.
Additionally, we will be implementing backface culling and spatial partitioning tech-
niques, which are essential for improving the performance and efficiency of the engine.
These techniques will help us to optimize the rendering process by reducing the num-
ber of unnecessary calculations and improving the overall performance of the engine.
Overall, this project will be a challenging and rewarding experience that will help us
to become better programmers and gain a deeper understanding of 3D graphics.

As a group, we are highly interested in game development and creating a ray cast-
ing engine is a perfect opportunity for us to gain hands-on experience in real-time 3D
game development. Through the process of creating this engine, we will gain a deeper
understanding of the intricacies and challenges of game development, and will be able to
apply this knowledge to our future endeavors. In addition to gaining valuable technical
skills, we will also have the opportunity to develop our problem-solving and teamwork
skills as we work together to create a functional engine.
Furthermore, once the engine is completed, we will have the potential to use it to create
our own simple game. This would be an exciting opportunity to apply our knowledge
and skills in a practical setting, and to see the fruits of our labor come to life in the form
of a fully-functioning game. Additionally, this will give us a chance to test and optimize
the engine in real-world scenarios, and identify any potential areas for improvement.
Overall, creating a ray casting engine is not only a great learning opportunity, but it
also has the potential to be the starting point of our own game development journey.

Finally, creating a 3D engine is challenging, we will need to debug and optimize the
code, and troubleshoot any issues that arise. This will help us develop problem-solving
skills and gain experience working as a team.

11

DAFT Finale Defense Report

5 Progress

6 Division of tasks

6.1 Task Distribution

Tasks Florian Angela David Timothy

Website

Ray Casting

Optimisation

OBJ File

Physics

Utils

Textures

Leader Substitute

6.2 Advancement planed for defenses

Advancement in percentage

Tasks Defense 1 Defense 2 Defense 3

Website 30% 60% 100%

Raycasting 50% 70% 100%

Optimisation 30% 50% 100%

OBJ files 80% 100% 100%

Utils 40% 60% 100%

Textures 0% 30% 100%

12

DAFT Finale Defense Report

6.3 Real advancement

Advancement in percentage

Tasks Defense 1 Defense 2 Defense 3

Website 40% 90% 100%

Raycasting 80% 90% 100%

Optimisation 20% 70% 100%

OBJ files 80% 80% 100%

Utils 70% 100% 100%

Textures 0% 0% 100%

More than expected Less than expected

As you see on the tabular above, we have advanced more than expected
on all of the fields except for the textures. Since we underestimated the
optimization of the real time rendering, to implement moving meshes in
real time would not give the results expected at this time. On the other
hand, we have implemented shadows in our world. Instead of adding
textures to the triangles, we have decided to allow the user to move
around freely in real time at low quality (without reflections and shadows)
and then take a snap of the world from the current cams position by
pressing the P key.

The OBJ Files section (Obj parsing) is now working for obj files that
include polygons with up to vertices allowing us to rending a wider range
of obj files. The last feature to be implemented is parsing and applying
the textures to the triangles.

13

DAFT Finale Defense Report

7 Utils

7.1 Structure Tools

To initialize each of the structures, we have used functions that malloc a pointer
for the corresponding structure and set the fields either with arguments or with default
values.

Since we have used malloc, free functions are necessary for any structure that con-
tains pointers to other structures. For any of the structures that include pointer lists,
a loop frees each of them.

In order to add a vertex to a mesh, we have implemented a simple function that takes
three floats and a mesh pointer. the same if done for a triangle however size t argu-
ments are used for index the vertices list instead of three floats. This has been done to
follow the structure of obj files to ease parsing.

To add structures to the world, we have used a another simple function that checks if
we have reached the maximum meshes/lights or cameras before adding them.

7.2 Architecture

After the restructure of the first version, we realised that a point structure was
unnecessary and costly. Therefore, we place all the point structures by a float array for
size 3.
All structure ids have been removed as they used too much space in memory and were
only needed for very few functions.
We have also created a Sphere object. In order to have the smoothest looking shape,
a mesh structure to imitate a sphere would require too many triangles. Therefore, the
sphere object is simply a center point and a radius meaning that it would have to be
rendered separately to the meshes.

14

DAFT Finale Defense Report

7.3 Math Tools

Since we have created our own strictures, we had to create our own set of maths
functions, only using functions like sqrt, cos and sin from the math.h library. Majority
of these functions have a version that takes pointers as arguments and another that
take static structures.

1. Dot Product

2. Cross Product

3. Scalar Product

4. Vector Addition

5. Vector subtraction

6. Normalize Vector

7. Norm of a Vector

8. Max and Min

15

DAFT Finale Defense Report

8 Preprocessing

8.1 Scene Parser

A .scene file is a configuration file used to define the elements and properties of a
3D scene. Here’s a documentation explaining how to use each line and its components:

Camera Line:

• Syntax: camera x y z pitch yaw fov

• Components:

– x, y, z: The position coordinates of the camera in the scene.

– pitch: The vertical rotation (in degrees) of the camera. Positive values tilt
the camera downwards, and negative values tilt it upwards.

– yaw: The horizontal rotation (in degrees) of the camera. Positive values
rotate the camera to the right, and negative values rotate it to the left.

– fov (optional): The field of view of the camera in degrees. It determines the
extent of the scene visible through the camera. If not specified, the default
value is 90.

Skybox Line:

• Syntax: skybox path

• Components:

– path: The file path to the skybox texture. The skybox is a cube that
surrounds the scene and provides the background appearance. The texture
should be in a format compatible with the rendering engine.

Light Line:

• Syntax: light x y z r g b

• Components:

– x, y, z: The position coordinates of the light source in the scene.

– r, g, b: The RGB color values of the light. Each value should be between 0
and 1, representing the intensity of red, green, and blue, respectively.

Sphere Line:

• Syntax: sphere x y z r material path

• Components:

– x, y, z: The position coordinates of the sphere in the scene.

– r: The radius of the sphere.

16

DAFT Finale Defense Report

– material path: The file path to the material properties of the sphere. The
material defines how the sphere interacts with light, including its color, re-
flectivity, and other visual properties.

Mesh Line:

• Syntax: mesh mesh path x y z scale rot x rot y rot z

• Components:

– mesh path: The file path to the 3D mesh model that will be rendered in the
scene. The mesh should be in a compatible format such as OBJ or FBX.

– x, y, z: The position coordinates of the mesh in the scene.

– scale: A scaling factor applied to the mesh. It determines the size of the
mesh in the scene.

– rot x, rot y, rot z: The rotation angles (in degrees) around the X, Y, and
Z axes, respectively. They define the orientation of the mesh in the scene.

Note: The components mentioned above should be replaced with appropriate values
or paths relevant to your scene. Ensure that the file paths are correctly specified to
load the required textures, materials, and mesh models.

By using these different line components in a .scene file, you can define and con-
figure various objects and properties to create immersive 3D scenes.

8.2 Obj File Parser

An object file is a simple text file format commonly used for representing 3D geom-
etry. And when implementing a 3D engine, using object files is essential, that’s why
a parser was implemented that retrieves relevant information from those files. They
consist of a collection of data points, including information about vertices, texture co-
ordinates, normals, and faces. In more details, vertices (v) are individual points in 3D
space, defined by their x, y, and z coordinates. Texture coordinates (vt) define how a
texture is applied to a surface, while normals (vn) describe the orientation of a surface
at each point. Faces (f) are defined as a set of vertices that form a polygon or triangle.
They are typically represented as a series of indices that reference the vertices, texture
coordinates and normals.

Object files have a fixed format, but the number of vertices in a face can vary from
3 to a large number. A face with 3 components forms a triangle but a face with more
than 3 components forms a polygon which will be then divided into triangles. The old
version only works with 3 full components, as well as 3 components only with vertices.
The current parser, loads object files with faces that have at most 5 components and
implements the computation of triangles from a polygon.

This object parser reads the file at a given path for the first time and computes
the total number of vertices and triangles. A face (f) can contain more than three
components. So When a face (f) is encountered, the number of components should
be computed in order to compute the correct number of triangles it forms; if it has

17

DAFT Finale Defense Report

Figure 3: Two faces one with 4 components and the second with 3

more than 3 components. Those two numbers are then going to be used to build a
mesh. Then, the file is read for a second time line by line to store the scaled vertices’
coordinates in the appropriate attributes in a three elements float array. After that,
the vertex is added to the mesh. As mentioned above, faces in different object files may
have more than 3 components. So in the second reading, when a face is encountered,
the number of it’s components is computed and at the same time the indexes of the
vertices that form it are stored in an integer pointer (p) initialized to the elements.
If the number of components is greater than 3, (p) is resized to the respective size of
components. Afterwards, the integer pointer (p) is used to compute the triangles and
add them to the mesh. In fact, an index i is used, which starts at 1 and goes at max-
imum to n-2, where n is the number of components that forms the face. In addition,
an integer array of 3 elements is created to store the indices of the vertices that form
the triangle in order to add the triangle to the mesh. The first element of the array is
the value of the first element of p -1, the second is the value of the element at index i
in p -1 and the third is the value of the element at index i+1 in p -1. Finally, when all
the triangles are added to the mesh, the mesh is added to the world and the file is closed.

8.3 Material File Parser

Textures enhance the visual realism of 3D objects by adding surface details, colors,
and patterns. The MTL parser enabled the extraction of material properties, from
the MTL file, which allowed for the proper application of textures on objects during
rendering. By accurately parsing and utilizing the MTL file, the parser ensured that
the textures were applied with the correct mapping and alignment, resulting in realistic
and visually appealing 3D scenes. Thus, the MTL parser played a vital role in achiev-
ing visually stunning and immersive 3D graphics by enabling the effective utilization of
textures on objects.

A Material Template Library file is a plain text file that contains material definitions
and associated properties for 3D objects in a 3D graphics application. It works in con-
junction with Object files, where the OBJ file specifies the geometry of the 3D objects,
while the MTL file defines the appearance and characteristics of the materials applied
to those objects.

An MTL file typically consists of one or more material definitions, each represented
by a series of properties. These properties describe various aspects of the material,
including its color, texture, reflectivity, transparency, illumination model, and more.
Here are some common properties found in an MTL file: -newmtl: specifies the start
of a new material definition
-Ka: ambient color of the material

18

DAFT Finale Defense Report

-Kd: diffuse color of the material
-Ks: specular color of the material
-Ns: shininess of the material
-Ni: index of refraction of the material
-d: dissolve factor of the material

These properties are specified for each material defined in the MTL file, allowing
for fine-grained control over the appearance of 3D objects in the scene.

By using the material definitions and properties specified in the MTL file, our 3D
rendering engine can accurately render and shade objects, providing realistic textures
and visual effects in the rendered scene.
The main objectives were to extract material properties such as ambient color, diffuse
color, specular color,, transparency in the MTL file. The MTL File was opened and its
content was read line by line, identifying different material definitions and associated
properties. Regular expressions techniques were used to extract material properties.
The extracted properties were stored in a suitable material structure. In addition,
some changes were made in other parts like in the process of adding the triangles to
the mesh and while loading the obj files. In more details, after storing the respective
components in the material structure, all the materials were stored in a pointer so we
can have acces to them easily and the number of loaded materials is stored in another
pointer. Also, some changes were added to the loading of obj files. Generally, in obj
files that are related to a material, there is a line at the top of the file ”mtllib -name of
a material file-” and this specifies to which mtl file this object is related to. In addition,
there is a ”usemtl -name of material-” which specifies which material in the mtl file
should be applied to the faces that are after this line.

Figure 4: Material Structure

In addition, to complete the material, we also have textures mapping that are comple-
mentary to those materials. Instead of finding lines beginning with Ka, Ks, Kd... we
find lines starting with :

-map_Ks Specular texture

-map_Ka Ambiant texture

-map_Kd Diffuse texture

-map_Ke Reflection texture

19

DAFT Finale Defense Report

You can find below the mtl file corresponding to a R2-D2 modelization:

Blender MTL File: ’None’

Material Count: 1

newmtl R2D2_IlluminationMaterial

Ns 96.078431

Ka 0.000000 0.000000 0.000000

Kd 0.690196 0.690196 0.690196

Ks 0.001176 0.001176 0.001176

Ni 1.000000

d 1.000000

illum 2

map_Kd R2D2_Diffuse.jpg

map_Ke R2D2_Reflection.jpg

map_Ks R2D2_Specular.jpg

You can see below the diffuse and specular textures from the R2D2 mtl file:

Figure 5:
R2D2Diffuse.jpg

Figure 6:
R2D2Specular.jpg

20

DAFT Finale Defense Report

Figure 7: Material and texture applied on R2D2 object

Figure 8: Material applied on katana object

9 Rendering

9.1 Ray-Triangle Intersection

We consider that each of the objects we are rendering are composed of a meshes that
contains polygon faces or spheres with a center point and radius. Triangles are the
simplest polygon leaving us an easy and optimized algorithm to calculate the ray inter-
section. The ray intersection function is used to determine if a ray has hit a triangle in
the environment. Since each ray represents a pixel, the pixel color depends on which
triangle it it intersects.
Our ray intersection function is inspired from the Möller-Trumbore intersection algo-
rithm. Here are the two main structure we will use to implement ray triangle intersec-
tion :

21

DAFT Finale Defense Report

Figure 9: Triangle struc-
ture

Figure 10: Ray structure

The first step to determine whether the ray intersects the plane that a particular
triangle lies on or not. We can cancel out any rays that are parallel to the plane using the
dot product between the ray direction and the result a vector subtraction between two
vertices of the triangle. Therefore, we need to get the edges for the triangle considered as
vectors. Considering a triangle with points A(xA,yA,zA), B(xB,yB,zB) and C(xC ,yC ,zC),
here are the formulas that allows us to determine the edges AB and AC:

A⃗B =(xB − xA, yB − yA, zB − zA)

A⃗C =(xC − xA, yC − yA, zC − zA)

We use arbitrarily the vector A⃗C to compute the following cross product with the
direction vector of the ray. Once done, a scalar product is computed with the resulted
vector and the vector A⃗B.

Cross product (h = edge1 X ray dir) :

H⃗ = (ACy ∗ dirz − ACz ∗ diry, ACz ∗ dirx − ACx ∗ dirz, ACx ∗ diry − ACy ∗ dirx)

Dot product (a = edge2 . h): a =(ABx ∗Hx, ABy ∗Hy, ABx ∗ zA)

The result, a, will allow us to determine if the ray is parallel to the plane formed by
the triangle. We set a constant called EPSILON to 0.0000001 and see if the absolute
value is less than our constant. In the case that it is, we consider the ray parallel to
the plane and stop the calculation there.

From there we use the Barycentric co-ordinates of the current triangle to find out
if the intersection is within the triangle.

22

DAFT Finale Defense Report

The point of intersection can be written as: P = wv1 + uv2 + vv3

The coefficients must be non-negative and sum to 1, so w can be replaced with 1− u− v

so we have:
P = (1− u− v)v1 + uv2 + vv3

P = v1 + u(v2 − v1) + v(v3 − v1)
The ray equation can be written as r⃗(t) = O + tv⃗
Equating the two gives :

O + tD = v1 + u(v2 − v1) + v(v3 − v1)

O − v1 = −tD + u(v2 − v1) + v(v3 − v1)

which is equivalent to: | | |
−d (v2− v1) (v3− v1)
| | |

t
u
v

 = O − v1

Then we use Cramers rule to solve for t, u and v.
Finally, if t is negative the ray doesnt intersect.
If u or v is not within the interval [0,1] and the um of u and v does not equal one, then
the point is not within the triangle.

For the sphere, we project the vector (sphere center - ray pos) onto the direction vector
of the ray which will give us the t value of the ray/ with that we have the closest posi-
tion of the ray to the sphere and check if this value is less than or equal to the radius
of the sphere.

9.2 Skybox

A skybox is a cube-mapped texture that is used to represent the background of
a 3D scene in computer graphics. The purpose of a skybox is to provide a realistic
representation of the sky and surrounding environment in a scene, while reducing the
computational overhead of tracing rays for distant objects.

In ray tracing, a skybox is implemented as a large cube that completely encloses the
scene. The interior of the cube is mapped to a single texture, which represents the sky
and surrounding environment. When a ray misses all of the objects in the scene, it is
assumed to have hit the skybox, and the color of the skybox is used as the background
color for that pixel.

23

DAFT Finale Defense Report

Figure 11: Skybox example

To map a ray to the skybox texture, UV mapping is used to determine the location of
the ray on the skybox image. UV mapping is a technique for mapping a 3D position to
a 2D texture coordinate. In the case of a skybox, the UV mapping is done by projecting
the ray direction onto the faces of the skybox cube and finding the corresponding pixel
on the skybox image.

for any P point on the sphere of radius = 1, calculate d the unit vector from P to
the sphere origin. Assuming that the sphere’s poles are aligned with the Y axis, UV
coordinates in the range [0, 1] can then be calculated as follows:

u = 0.5 + arctan(dz ,dx)
2π

v = 0.5arcsin(dy)

π

We can now compute the color of the pixel and then, fill the empty pixels of the
screen by a nice Skybox !

In conclusion, a skybox is a cube-mapped texture that is used to represent the
background of a 3D scene in computer graphics. UV mapping is used to map a ray to
the skybox texture, and the formulas for u and v can be calculated using the arctangent
and arcsine functions. The use of a skybox can greatly improve the performance of ray
tracing by reducing the computational overhead of tracing rays for distant objects.

9.3 Lights and shadow

9.4 Lights

For this defence, we used the lights to make a very simple render for our shadows.
The lights structure has been defined for the last defence and is implemented as follows:

As described above, the lights have three fields that are explicit : color, intensity
and a position that acts as a vector. For further features, we might add direction field

24

DAFT Finale Defense Report

Figure 12: Light structure

to the lights in order to make shadows more realistic. In the world structure, we have
implemented a linked list of lights, so that it is simpler to iterate over it, especially for
the rendering of the shadows. Implementing lighting in a 3D engine project involves
calculating the ambient, diffuse, and specular reflection of light sources. To begin, the
ambient light component provides a base level of illumination to all objects in the scene.
This is achieved by adding a global ambient light color to the final color calculation of
each object, creating a uniform illumination across the scene.

Next, the diffuse lighting component is computed by determining how the light in-
teracts with the object’s surface. The direction of the light source and the object’s
normal vector are utilized to calculate the intensity of the diffuse reflection. By ap-
plying the Lambertian lighting model, which assumes that light is scattered equally in
all directions on a diffuse surface, the resulting intensity is multiplied by the material’s
diffuse color.

Finally, the specular reflection accounts for the shiny highlights on the object’s sur-
face. This is computed using the viewer’s position, the light’s direction, and the object’s
normal vector. The reflection vector is calculated and compared with the viewer’s vec-
tor to determine the intensity of the specular highlight. The material’s specular color
is then multiplied by this intensity to obtain the final specular reflection.

By combining the ambient, diffuse, and specular components, the overall lighting
effect can be achieved for each object in the 3D scene. This process is repeated for each
light source present in the scene, with their contributions accumulated to create the
final lighting result. Implementing these calculations accurately and efficiently enhances
the visual realism of the 3D engine, allowing for realistic illumination and captivating
virtual environments.

25

DAFT Finale Defense Report

Figure 13: Lights rendering on a cube

9.5 Shadows

Since we are using the ray casting process for the whole project, it is quite simple
and efficient to render shadow in the frame. We wanted to add a basic rendering of
shadows for all our objects present in the environment. For now, we were able to render
objects in the environment such as simple polygons, but also more complex forms like
cows, human shape meshes... You can find below the render of the shadow that we
have achieved for this defence.

26

DAFT Finale Defense Report

Figure 14: First shadow rendering

In the adjacent image, we can see a diffuse sphere and a diffuse plane illuminated by
a directional light source. What’s missing now in this image to make it more realistic
is the shadow of the sphere on the plane. Fortunately, simulating the action of objects
casting shadows on over objects in the scene is pretty straightforward to simulate in
CG. Well, it depends on the algorithm used to solve the visibility problem. Since we use
ray tracing, computing shadowing can be done while the main image is being rendered
(it doesn’t require precomputing a special image such as a shadow map).
All we need to do is cast a ray from the object visible through a particular pixel of
the frame, from the point of intersection to the light source. If this ray which we call
a shadow ray intersects an object on its way to the light, then the point that we are
shading is in the shadow of that object.
To make it easier to understand, we can do a simple comparison with the real world
and illustrate it with a simple image.

Figure 15: Shadow rendering in CG

27

DAFT Finale Defense Report

For instance, in the real world, light travels from the light source to the eye. Shadows
are the consequence of some objects along the light path blocking the light from reaching
another surface that is located further along the way. Though, in CG (Computer
Graphics), it is more efficient to trace the path of light from the eye to the light source.
Thus, we first trace a camera or primary ray, then find an intersection point (the
surface that is visible for the pixel from which the primary ray was cast) and then trace
a shadow ray from that point of intersection to the light. The difference between what
happens in nature, and how we compute shadows in CG is shown in figure 8. To get the
intersection point with the meshes, we have a structure named rayresult which contains
the result of every ray (Figure 9).

Figure 16: Ray result structure

We will use this structure to store the first intersection point with the closest mesh
from the ray launched at the position of the camera. Once we had identified the closest
object, we cast shadow rays from the object’s surface point to the light source. If the
shadow ray intersected with another object in the scene before reaching the light source,
we concluded that the point on the object’s surface was in shadow. Before we launch
the ray to the light, the ”mint” field is set to the distance between the light and the
point so that we can check if this distance changed after the launch. Indeed, the mint
field indicates the distance between the origin of the ray and the first object that has
been hit. If the mint value changes, it means that we have hit an object before the
light and therefore the pixel at the origin is set to black.

28

DAFT Finale Defense Report

9.6 Further optimizations

Note that when we compute whether a point is in the shadow of an object, the
order in which the objects intersected by the shadow ray doesn’t matter. It doesn’t
matter if the object that the shadow ray intersects is not the closest object to the ray’s
origin. All we care about in this case of a shadow ray is to know if the ray intersects an
object at all in which case the point from which the shadow ray was cast is in shadow.
Practically, this means that for shadow rays, we could very well return from the trace
function as soon as we intersect one object in the scene. This can potentially save some
computation time.

Figure 17: Illustration for optimization

29

DAFT Finale Defense Report

Though this optimization is only possible if all the objects in the scene are fully
opaque. If some of the objects are transparent, then light rays that are potentially being
attenuated while traveling through these semi-opaque objects should keep traversing
the objects until they either encounter an opaque object on their way to the light or
reach the light itself (only in the case of spherical lights, not in the case of distant light
which is assumed to be located at infinity). In this section, we will not show how to
handle semi-opaque objects for shadow rays. Trying to optimize the code for shadow
ray if you plan to support semi-opaque objects, later on, is not worth the pain but is
left as an exercise if you wish to.

9.7 Loading bar

A loading bar appears on the screen when the key ”p” is pressed. It represents
the progress of copying the lower-quality image into a higher-quality image. It visually
indicates how much of the copy has been completed in green and how much is left in
black.

9.8 Rasterization

When rasterizing a sphere onto a flat screen, you first need to define the dimensions
of the screen, specifying its width and height in pixels. This will determine the resolution
of the output image. Next, you should determine the center coordinates and radius of
the sphere you want to rasterize.

To begin the rasterization process, you iterate over each pixel on the screen. For
every pixel, you perform a calculation to determine its corresponding position on the
sphere. This involves converting the 2D pixel coordinates back into 3D coordinates on
the sphere using a process called reverse projection.

By normalizing the screen coordinates to a range of [-1, 1] based on the screen dimen-
sions, you can calculate the corresponding x, y, and z coordinates on the sphere. The
z-coordinate is determined using the equation of a sphere, and the x and y coordinates
are scaled by the radius to obtain the final coordinates on the sphere.

Once you have the 3D coordinates for each pixel, you can determine whether the
pixel falls inside or outside the sphere. This is done by calculating the distance between
the sphere’s center and the pixel using the distance formula. If the distance is less than
or equal to the sphere’s radius, the pixel is considered inside the sphere; otherwise, it
is outside.

Based on this determination, you assign a color to each pixel. Pixels inside the
sphere can be colored to represent the surface of the sphere, while pixels outside can
be given a background color or left empty to represent the absence of the sphere.

Since we know the radius and center on the screen, we only need to check pixels
that are within a bounding box of the circle on the screen.

30

DAFT Finale Defense Report

For all other objects, project their bounding boxes points on the the screen and then
take the max in the x and the y axis to get all the pixels contained in an axis aligned
square according the the screen dimensions.

31

DAFT Finale Defense Report

10 Video

Looking towards the upcoming defense, we are also excited to unveil another new
feature in our 3D engine: the ability to capture and display multiple high-quality images
within our virtual environment. Our goal is to allow users to capture images from
different angles and perspectives, and then display them in sequence to create a video-
like experience that showcases the details and features of our virtual environment. To
achieve this, we plan to capture multiple high-quality images at different points in the
virtual world. This new feature will allow us to showcase the richness and complexity
of our virtual world and provide a more interactive experience for users. We believe it
will be a significant addition to our presentation at the upcoming defense. To do this,
we will allow user input to set point in our world in which we will move the camera on
using interpolation.
For this feature, we have mainly used the FFmpeg technology, that is a powerful tool for
this purpose. Indeed, FFmpeg is a powerful and widely used open-source software suite
for handling multimedia data. It serves as a command-line tool that allows users to
manipulate, convert, and stream audio and video files. The name ”FFmpeg” stands for
”Fast Forward MPEG” since it was initially developed to handle MPEG video formats.
However, over time, FFmpeg has expanded its capabilities and now supports a vast
range of multimedia formats, codecs, and protocols.

FFmpeg provides a comprehensive set of tools and libraries for tasks such as video
encoding, decoding, transcoding, filtering, and streaming. It supports a wide array of
video and audio codecs, allowing users to convert media files between different formats.
Additionally, FFmpeg offers various filtering options to modify and enhance multimedia
content, including resizing, cropping, adding watermarks, and applying special effects.

One of the key strengths of FFmpeg is its cross-platform nature, as it can be used on
multiple operating systems such as Windows, macOS, and various Linux distributions.
Its command-line interface allows for automation and scripting, making it popular
among developers and system administrators.

Furthermore, FFmpeg’s flexibility and extensibility have led to its integration into
numerous applications, media players, and frameworks. Its libraries, such as libav-
codec and libavformat, provide a programming interface that developers can utilize to
incorporate FFmpeg’s capabilities into their own software projects.

Overall, FFmpeg is a versatile and powerful multimedia framework that enables
users to manipulate, convert, and process audio and video files with efficiency and
flexibility. Its widespread adoption and active development community make it a go-to
tool for many multimedia-related tasks.

32

DAFT Finale Defense Report

Here is the main reasons why FFmpeg is considered efficient for video processing:
- Broad Format Support: FFmpeg supports a wide range of video and audio formats,
including popular ones like MP4, AVI, MKV, and more. This broad format support
allows users to handle and convert videos in different formats without needing to install
multiple software tools.

- High Performance: FFmpeg is designed to be fast and efficient, utilizing optimized
algorithms and libraries for encoding, decoding, and processing multimedia data. It
leverages hardware acceleration when available, such as GPU acceleration, to further
enhance performance and speed up video processing tasks.

- Multithreading and Parallel Processing: FFmpeg can take advantage of multi-
core processors by utilizing multithreading and parallel processing techniques. This
allows for concurrent execution of tasks, enabling faster video encoding, decoding, and
transcoding operations.

- Streaming Capabilities: FFmpeg excels in streaming multimedia content over vari-
ous protocols and network environments. It supports both input and output streaming,
making it a reliable tool for live streaming, video-on-demand (VOD) streaming, and
video conferencing applications.

- Extensive Filters and Effects: FFmpeg provides a rich set of video filters and ef-
fects that can be applied during video processing. These filters allow users to resize,
crop, rotate, add text or watermarks, adjust colors, apply special effects, and perform
other manipulations on the video stream. This flexibility enables users to enhance and
customize videos according to their specific requirements.

- Command-Line Interface: FFmpeg’s command-line interface offers flexibility and
automation. Users can create scripts and batch processes to perform complex video
operations, allowing for efficient and consistent video processing workflows.

- Open-Source and Community-Driven: FFmpeg is an open-source project with a
large and active community of developers. This means that the software is continuously
improved, updated, and maintained by a dedicated community. Bugs are quickly ad-
dressed, and new features are regularly added, ensuring that FFmpeg remains a reliable
and efficient tool for video processing.

Due to its performance, versatility, and extensive features, FFmpeg has become a
popular choice for professionals and enthusiasts involved in video editing, transcoding,
streaming, and various other multimedia-related tasks.
In the figure below, you can see white points, that corresponds to ”checkpoint” for the
output video. Indeed, during the process, the camera will go through each point and
link the images frame by frame to create the video.

33

DAFT Finale Defense Report

11 Website

The goal was to create a visually appealing and responsive website. The website
needed to be accessible across different devices and screen sizes. To achieve this, we
chose to leverage the power of Bootstrap, a widely-used framework known for its flexi-
bilty and efficiency.

11.1 Bootstrap

Bootstrap is a powerful and widely adopted front-end framework that has revolu-
tionized website development. Developed by Twitter, Bootstrap offers a comprehensive
collection of pre-designed templates, CSS styles, and JavaScript components, making it
an indispensable tool for developers. At its core, Bootstrap is designed to provide a re-
sponsive and mobile-first approach to web design, ensuring that websites are optimized
for various screen sizes and devices. The framework’s key advantage lies in its ease of use
and flexibility. It provides a robust grid system that simplifies the layout structure of a
website, allowing developers to create visually appealing and well-organized interfaces.
Additionally, Bootstrap’s extensive library of components, including navigation bars,
buttons, forms, modals, and carousels, offers a wide range of ready-to-use elements that
can be easily customized and integrated into a project. This allows developers to save
time and effort by leveraging the pre-built components rather than building them from
scratch. Another noteworthy aspect of Bootstrap is its focus on cross-browser compat-
ibility, ensuring that websites built with the framework are compatible with different
web browsers, minimizing the need for extensive testing and troubleshooting. Moreover,
Bootstrap’s responsive design capabilities and consistent styling ensure a cohesive and
professional appearance across various devices and platforms. With a large and active
community, Bootstrap continues to evolve, introducing new features, enhancements,
and responsive design patterns to keep up with the latest trends in web development.
In summary, Bootstrap is a versatile and user-friendly framework that empowers de-
velopers to create modern, responsive, and visually appealing websites efficiently. Its
extensive library of components, responsive grid system, cross-browser compatibility,
and active community support make it an invaluable tool for web development projects
of all sizes and complexities.

Advantages of Bootstrap:

-Responsive Design: Bootstrap offers a mobile-first approach, enabling the website
to automatically adjust its layout based on the user’s device, whether it’s a desktop,
tablet, or smartphone.

-Cross-Browser Compatibility: Bootstrap ensures that the website appears consistent
and functions properly across different web browsers, saving developers from the hassle
of extensive browser testing.

-Customization Options: Bootstrap can be customized to match the specific design
requirements of a project. Developers can choose to use the default styles or modify

34

DAFT Finale Defense Report

them using CSS to create a unique visual identity for the website.

We used Bootstrap to achieve the following:
-Layout Design: We employed the Bootstrap grid system to structure the website’s
layout, ensuring that the content was displayed optimally across various devices. This
involved dividing the page into responsive rows and columns to create a flexible and
balanced structure.

-Styling and Theming: By leveraging Bootstrap’s CSS classes and components, We
applied consistent styling throughout the website. This included typography, buttons,
forms, and navigation elements.

-Responsiveness: We utilized Bootstrap’s responsive utilities to create a fluid and adapt-
able design. This allowed the website to resize and reposition elements automatically
based on the user’s screen size, enhancing the overall user experience.

By leveraging Bootstrap, we successfully developed a dynamic and responsive website
for the project. The framework’s powerful features, such as its grid system, extensive
component library, and customization options, enabled us to create a visually appeal-
ing website. Bootstrap proved to be an invaluable tool in achieving a consistent and
responsive design across different devices, ultimately enhancing the overall user expe-
rience.

When the user is on our website, he can find a brief project presentation. He can
find also the link to the projects’ github repository and the link to the documentation
of the project. When scrolling down, he can see the timeline of the project. Then,
he can visualize some example of renderings: a sphere in a skybox with the reflection
applied to it, mutltiple spheres, an iron mask and a character. Then he can see the
group presentation as well as the dowloadable files as well as our book of specification.
On the documentation link, the user can find the architecture of the project, the engine
step by step, the errors encountered and different links and sources.
The user will find a detailed structure of the projects architecture with the explanation
of each file and function, the usage and the errors are mentionned as well.

35

DAFT Finale Defense Report

12 Optimisation

12.1 Bounding Boxes

Bounding boxes serve as a cornerstone optimization technique in computer graphics,
particularly in the context of ray tracing, where performance is crucial. These spatial
data structures act as efficient containers that enclose groups of objects within a defined
box-like region. By encompassing objects with bounding boxes, complex scenes can be
organized and processed more effectively.

In ray tracing, the intersection test between rays and objects is a computationally
expensive operation. However, by leveraging bounding boxes, the number of these tests
can be significantly reduced. When a ray traverses a scene, it first checks for intersec-
tion with the bounding box of an object. If there is no intersection with the bounding
box, the entire object can be disregarded, saving precious processing time. This op-
timization technique greatly reduces the overall number of intersection tests required,
resulting in faster rendering times and improved performance.

The impact of bounding boxes on performance becomes especially pronounced when
rendering scenes with numerous objects. Without bounding boxes, each ray would need
to be tested against every object in the scene, resulting in a significant computational
burden. However, by utilizing bounding boxes, the number of actual intersection tests
is dramatically reduced, often by orders of magnitude. This reduction in computational
overhead allows for smoother real-time rendering, interactive applications, and the abil-
ity to handle more complex scenes.

Moreover, bounding boxes play a vital role in accelerating data structures used in ray
tracing, such as kd-trees and BVHs. These structures organize objects hierarchically,
based on their bounding boxes. This hierarchical arrangement optimizes the traversal
process by reducing the number of objects that need to be tested for intersection with
a given ray. By traversing the hierarchy and selectively testing only relevant objects,
significant performance improvements are achieved. This results in efficient ray-object
intersection calculations and further enhances the overall rendering speed.

In summary, bounding boxes are a crucial optimization technique in ray tracing,
offering substantial benefits in terms of performance and efficiency. By reducing the
number of intersection tests, bounding boxes enable faster rendering times, making
real-time or near-real-time rendering achievable for complex scenes. When combined
with acceleration structures like kd-trees or BVHs, bounding boxes further enhance
the performance of ray tracing algorithms, resulting in efficient traversal and improved
overall rendering speed. The utilization of bounding boxes represents a fundamental
approach to achieving high-quality, real-time computer graphics rendering.

12.2 K-d trees

For effective spatial searches in multi-dimensional data, such as in the 3D rendering
of meshes, a data structure known as a k-d tree, or short for k-dimensional tree, is

36

DAFT Finale Defense Report

frequently employed.
A k-d tree can be used to speed up the ray-tracing procedure, which involves figuring

out which objects in a scene intersect with a specific ray, while displaying meshes. The
renderer can concentrate only on the necessary parts of the mesh by swiftly eliminating
huge regions of the mesh that do not cross with the ray by arranging the triangles of
the mesh into a k-d tree.

What makes a K-d tree more optimal than the Bounding Volumes is that instead
of checking the intersection of the ray with a bounding box, we can check the ray
intersection with a min and max value in a certain axis. This speeds up the traversal
time.

Furthermore, only needing to spilt on dimension at a time increase the building time
of the tree structure.

After the first creation of the K-d Tree, we found that the

12.3 Parallel Programming

Parallel computing is a critical factor in the context of ray tracing, as it enables
substantial performance improvements in the rendering process. Ray tracing involves
computationally intensive tasks, such as casting numerous rays through a 3D scene to
simulate the complex interactions of light with objects and surfaces. By leveraging
parallel computing techniques, the computational workload of tracing these rays can
be effectively divided among multiple processors or cores, leading to significantly faster
rendering times and enhanced efficiency.

One widely adopted approach to introducing parallelism in ray tracing is to parti-
tion the image into smaller tiles and assign each tile to a separate processor or core.
This allows for concurrent processing of rays within each tile, harnessing the power of
parallel execution. As the processors work independently on their assigned tiles, the ray
tracing computations can proceed simultaneously, exploiting the parallel capabilities of
the underlying hardware. Once all the tiles have been processed, the resulting partial
images can be efficiently combined to generate the final rendered image. This approach
effectively reduces the overall rendering time, especially for scenes with complex geom-
etry and lighting effects.

In practice, various parallel computing frameworks and libraries can be employed to
facilitate the implementation of parallelism in ray tracing. One popular example is the
OpenMP library, which provides a straightforward and portable interface for adding
parallelism to C, C++, and Fortran programs. By utilizing OpenMP directives, devel-
opers can annotate specific sections of the ray tracing code to indicate the regions that
can be executed in parallel. These directives allow for automatic workload distribution
and thread management, enabling efficient utilization of multiple processors or cores.

Moreover, parallel computing is not limited to just the ray tracing computations.
It can also be leveraged in other stages of the rendering pipeline, such as intersection
testing, shading, and post-processing. By parallelizing these tasks, the overall rendering
process can be further accelerated, leading to real-time or near-real-time rendering
capabilities.

In conclusion, parallel computing is a crucial factor in the optimization of ray trac-
ing. By effectively dividing the computational workload and leveraging the power of
multiple processors or cores, parallel computing significantly enhances rendering perfor-

37

DAFT Finale Defense Report

mance and enables the handling of more complex scenes. Strategies like tiling the image
and utilizing parallel computing libraries such as OpenMP offer efficient solutions for
implementing parallelism in ray tracing. Overall, parallel computing techniques con-
tribute to pushing the boundaries of realistic and interactive computer graphics by
enabling faster and more efficient rendering.

38

DAFT Finale Defense Report

13 Features

13.1 Further Optimisations

13.1.1 Optimized TLAS rotations

One of the way that can be used to optimize our implementation is using the TLAS
rotation. TLAS instances can be more efficient for tracing if their local bounding boxes
are axis-aligned. Even if we have no control over individual objects, we can come up
with a global transform for all instances to improve tracing time.

However, instead of proceeding transform on each of the instances in the environment,
we thought that rotating the ray for each objects instead of the objects themself could
be an efficient solution to reduce the computation time and therefore maximize the op-
timization. Though, this method may not be beneficial for every type of environment
: it is mainly used in environment where most objects are oriented in the same axis.

13.1.2 Alpha tested geometry

Alpha testing is a technique where fragments of a 3D model are discarded based
on the alpha value of the texture. By using alpha tested geometry, the ray casting
process can be improved because only the visible parts of the model are checked for
intersection with the ray, saving computation time and improving performance. This
is because the fragments that are not visible, or have a zero alpha value, are discarded
before the intersection test, reducing the number of unnecessary calculations.
One way to reduce the tracing cost is to start with pre-tracing, where you trace local
neighborhoods for each pixel in screen space, similar to screen space shadows or ambient
occlusion techniques. You don’t have to perform this step for every pixel on-screen to
make sure that there is no additional overhead. For that, you can use additional data
stored in G-buffer surfaces to mark the pixels that belong to hair or fur.

Diffuse global illumination or reflections on rough surfaces may not require precise
albedo or alpha testing results. You can store averaged material values per primitive.
This way, good results can be achieved by stochastically evaluating opacity during any-
hit shader execution without the need for additional per-vertex attributes fetching and
interpolation or texture sampling.

13.1.3 Denoising

Denoising is a technique used in computer graphics to remove noise or visual ar-
tifacts from a rendered image. In the context of ray tracing, noise often appears as
random speckles or fluctuations in color and brightness, particularly in areas of an im-
age that are poorly lit or have a lot of reflective surfaces. These artifacts can make the
image appear grainy and lower the overall quality of the rendering.

Denoising works by analyzing the pattern of the noise in an image and then removing it
by smoothing out the speckles. This results in a cleaner, smoother image with improved
visual quality.

39

DAFT Finale Defense Report

There are several different denoising algorithms that can be used, each with its own
strengths and weaknesses. Some popular denoising methods include non-local means,
bilateral filtering, and deep learning-based approaches.

Using denoising can have a significant impact on the performance of ray tracing. By
removing noise from the image, fewer samples are needed to achieve a desired level of
visual quality. This means that the rendering process can be completed faster and with
less computational resources, leading to improved performance. Additionally, denoising
can also help to reduce the amount of memory required to store the rendered image,
further improving performance.

In summary, denoising is a technique that can help to improve the performance of
ray tracing by reducing noise and visual artifacts in the rendered image, leading to
faster rendering times and lower memory usage.

13.2 Image processing

Figure 18: Cow mesh with skybox

40

DAFT Finale Defense Report

Figure 19: Plane with materials and textures

Figure 20: Hand with materials and textures

14 Conclusion

In summary, our project is focused on the development of a 3D engine that uses
ray casting to produce highly detailed and realistic images and animations. Ray cast-
ing provides an effective way to determine the correct colors for objects in a virtual
world and enables the creation of 2D images and maps from 3D environments. Our
objective is to create a fully functional 3D engine that can be utilized for a broad range
of applications such as video games, architectural visualization, and robotic mapping.
In addition to the original scope of the project, we have implemented additional fea-
tures including reflective objects and reflections, transparency, and an OBJ parser that
can load more than three components. Furthermore, we have updated the website to

41

DAFT Finale Defense Report

provide a more comprehensive overview of our engine’s capabilities. We are confident
that the use of ray casting in our engine will provide an efficient and powerful tool for
producing lifelike images. We are excited to demonstrate the full capabilities of our
engine during the final defense.

The journey of developing a 3D engine has been an incredible experience for all
members of the group, both personally and professionally. As we come to the end of
this project, we find ourselves filled with a profound sense of achievement and growth.
Through countless hours of coding, debugging, and problem-solving, we have gained in-
valuable technical expertise and a deep understanding of computer graphics. Moreover,
the project has fostered a strong sense of camaraderie and collaboration within our
team. We have learned to work together, support one another, and overcome obstacles
as a cohesive unit. The joy of witnessing our engine come to life, rendering stunning
visuals and interactive environments, has been truly exhilarating. This project has ig-
nited a passion for game development and computer graphics within each of us, leaving
us inspired and eager to explore further possibilities. Overall, the 3D engine devel-
opment project has brought us not only technical proficiency but also a deep sense
of fulfillment and a shared bond that will continue to fuel our pursuit of innovative
projects in the future.

42

